Human Interface Evaluation Methods for Submarine Combat Systems

Bonnie Hautamaki Ron Small

7 June 2006

Introduction – Phase I SBIR Human Interface Evaluation Methods for Submarine Combat Systems

- NAVSEA PMS-425 Sponsor
 - Mr. Nickolas Guertin
- Naval Undersea Warfare Center (NUWC) TPOCs in Newport, RI
 - Dr. Joseph Gabriel
 - Ms. Megan Gibson
 - Dr. Susan Kirschenbaum
 - Chief Jerrett S. Boehning, FTC (SS/DV)

So what's the problem?

Combat System (CS) operator's job

- Goal: maintain an accurate tactical picture
 - Surface, sub-surface
- Receive contact data from sonar party
- Perform target motion analysis (TMA)
- Determine solution for each contact of interest
- Update solutions

Challenges for the CS operator

Data-related challenges

- Massive quantity of sensor data
- Inherent uncertainty in sensor data
- Requires quick, accurate sorting & prioritization
- Contacts could be hostile

Environmental challenges

- Severe consequences for error
- Work as quickly as possible
- Underwater hazards
- Threat situation
- Underwater acoustics

Some overall challenges...

- The inherent uncertainty of the operating environment provides significant opportunity for error.
- 2. More information is not necessarily better.
 - A multitude of alerts for isolated incidents can cause more harm than good.
 - Collectively, a set of alerts can carry more weight than they do individually.
- 3. So how to manage alerts?
 - Want operator to be well-informed
 - But don't overload operator with data

Example: Alert Manager window

Tactical Control /Weapons Control interface

- Operator must look directly at window to see alerts
- Alerts noted individually rather than grouped and connected
- All alerts are presented in a similar manner (text on screen)

The design challenge

- To produce a system that helps the CS operators without increasing the system complexity.
- Identify a potential aid for users that could:
 - Assimilate information for the user (similar to "grouping")
 - Prioritize alerts
 - Provide alerts at the right time, in a mode suitable for the conditions and the severity
 - Inform operator of alert, even if he is not looking at screen

MA&D's approach

- 1. Choose metrics
 - For evaluating operator performance
- 2. Model a baseline system
 - Focused on the human operators & their tasks
- 3. Select a system enhancement
- 4. Change model to reflect system enhancements
- 5. Compare operator performance
 - Baseline model vs. enhanced system model

Metrics

- 1. Metrics allow for comparison of model's operator performance to system requirements.
- 2. Not necessary to show improvement in every category but want clear indication of overall improvement.

Developed a scenario Key elements: ASW, Coming to PD, Transiting a strait,

Scenario timeline (excerpt)

Elapsed time from T ₀ (H+MM)	0+00	1+05	1+12	1+42
	T ₀	T ₁	T ₂	T ₃
Duration	0+00	1+05	0+07	0+30
Positions				
Ownship location	~27 nm < Strait	~26 nm < Strait	~23 nm < Strait	~22 nm < Strait
M-5 location	~25.5 nm < Strait	~24 nm < Strait	~21 nm < Strait	~20 nm < Strait
Goals	Close trail of M-5	Prepare for PD	Navigation Fix	Return to depth
	Remain undetected!	Open range to M-5 for PD	Communicate	Resume track
Sub-Goals	Distance to M-5 track	Sonar search	Turn toward M-5	Update SVP in dive
	Depth differential	Clear baffles	Visual search	Update current set & drift
	Match speed in LOS	Visual search	Prepare to dive	Set course, speed, depth
	Range = 1-2 nm	SVP updates		
Ownship States				
True course (degrees)	~270	~360	~360 - 225	~225 - 270
Speed (knots)	~9	~7-15	~4-6 at PD	~14-15 knots
Depth (feet)	~250	ascent 5° - 6°	PD (sea state = 3)	initially)
Range to M-5	~1-2 nm	~4-5 nm	~4-5 nm	~3-4 nm, closing
Distance to M-5 track	right, 1 kyds	na	na	na
Speed in LOS (knots)	none	na	na	na
Depth difference between ownship and M-5 (feet)	~50-100	na	na	na
Errors, Hazards	Too close	Fail to detect contacts	Get detected!	Get detected!
	Too far	Bad choice of turn away	Lose M-5 while at PD	Lose M-5
		Lose M-5	Too fast at PD (wake & feather)	
			Too long at PD	

Mission metrics

Mission Metric	How measured		
Closest point of approach of hazards	Miss distances in 3D to other ships or obstacles		
Area of uncertainty (AOU) overlap	Time and amount of overlapping AOUs with hazards		
Abrupt maneuvering	Number and suddenness of maneuvers to avoid hazards		
Proper track position	3D distance from desired track (especially in relation to contact of interest)		

Developed a task-network model

- Focus of model: Combat System operator
- Also modeled sonar party

Added control room animation

- For better visualization of task-network model behaviors
- Information flow between persons in control room
- Indication of alerts

Geographical area of uncertainty

- CS operator has not updated manual solution
- AOU for deep-draft tanker has grown; overlaps ownship

Error Monitor → HMIAS Hazard Monitor & Intelligent Alerting System

Generic CCS Operator Error/Hazard Network

Increasing severity of consequences Increasing intrusiveness of alerts

Increasing levels of alerts

Alert	Initial	2 nd	3 rd	4 th
Format	Text	Text, flashing	Text, flashing, audio alarm	Text, flashing, audio alarm, plus audible instructions

Increasing levels of intrusiveness

Results: Model Comparison

Goals: Avoid collision, Track quiet diesel submarine

Metrics:

1. Closest distance, ownship to deep-draft tanker at time of evasive maneuver

2. Distance from ownship to quiet diesel at time tracking is resumed

3 Anale off tracking course once tracking is resumed

Mission Performance Metric	Without HMIAS (Baseline)	With HMIAS	Change*
CPA to deep-draft tanker hazard	Approx. 0.5 nm (1000 yards)	Approx. 1.0 nm (2000 yards)	2x distance to hazard
Distance to quiet diesel submarine after avoiding tanker (goal = 4nm)	4.71 nm (approx. 9540 yards)	4.14 nm (approx. 8385 yards)	Closer to goal of 4 nm
Angle off desired track after avoiding tanker	90 degrees	30 degrees	Smaller angle off desired track

^{*} Notional results from enhanced system

Conclusion

- 1. Groundwork: understanding & improving decisions made at the command level
- 2. Findings from operator task-network model: potential to apply toward system, employment and training improvements
- Developed tools, metrics, methodology may apply to complex control systems in other domains (military & industry)

4. HMIAS:

- Benefit from increasing intrusiveness → prevent errors & consequences
- Increase situation awareness & disseminate critical information for improving operator interfaces.

What's next?

Submitted proposal to continue research:

- 1. Further develop the baseline task-network model
- Develop HMIAS prototype
- 3. Identify display improvements for CCS interfaces
- Pursue development of innovative displays related to uncertainty

Model Demo

Questions?

Thank you!

Bonnie Hautamaki Ron Small

Alion Science and Technology
MA&D Operation
4949 Pearl East Circle, Suite 300
Boulder, CO 80301
303.442.6947
www.maad.com, www.alionscience.com

bhautamaki@alionscience.com rsmall@alionscience.com

© 2006 Alion Science and Technology